La optimización de la resolución de problemas es una tarea compleja y desafiante. Cada etapa del proceso comporta diferentes retos que a veces no son fáciles de resolver utilizando una solución de resolvedor independiente. Si se añade presión para producir resultados basados en datos cada vez más complejos y cambiantes, la construcción de modelos se ha vuelto ahora más difícil que nunca. Los profesionales necesitan soluciones de software en las que confíen para ayudarles a ofrecer resultados...
La diferenciación automática adjunta (AAD) es una técnica informática para calcular derivadas. Usada correctamente, AAD calcula las derivadas mucho más rápido y con mucha más precisión que los métodos alternativos. NAG continúa innovando en el área de diferenciación automática a través de su colaboración con científicos informáticos líderes del RWTH Aachen y más allá con la última actualización de su producto de vanguardia. NAG proporciona una biblioteca de encabezados de C++ AD rica en...
Uno de los algoritmos clave para abordar problemas generales de optimización no lineal con restricciones es un método de programación cuadrática secuencial (SQP) de conjunto activo. Es un caballo de batalla para muchos resolvedores comerciales y de código abierto. Las Librerías NAG® ofrecen una versión de última generación dentro de Optimization Modeling Suite. Complementa el método del punto interior (IPM) de NAG y otros métodos especializados para la optimización no lineal, como la...
DekaBank quería una mejor gestión de riesgos, precios más precisos y respaldar el negocio de derivados en expansión del banco, todo sin aumentar los costes informáticos. Fue entonces cuando recurrieron a la diferenciación automática (AD) y, en particular, a la diferenciación automática adjunta (AAD). Después de comparar tres herramientas, DekaBank eligió la solución AD de NAG, NAG® DCO/C++. DCO/C++ Herramienta de software AD para calcular sensibilidades de códigos en C++ Incorpora más de...